Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Tree Physiol ; 44(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38531772

ABSTRACT

Xylem embolism is a significant factor in tree mortality. Restoration of hydraulic conductivity after massive embolization of the vascular system requires the application of positive pressure to the vessels and/or the creation of new conductive elements. Some species generate positive pressure from the root system to propagate pressure in distal, aboveground organs in spring, whereas other species generate positive pressure locally at the stem level during winter. We provide a mechanistic explanation for winter stem pressure build-up in the walnut tree. We have developed a physical model that accounts for temperature fluctuations and phase transitions. This model is based on the exchange of water and sugars between living cells and vessels. Our computations demonstrate that vessel pressurization can be attributed to the transfer of water between vessels across the parenchyma rays, which is facilitated by a radial imbalance in sugar concentration. The ability to dispose of soluble sugars in living cells, and to transport them between living cells and up to the vessels, is identified as the main drivers of stem pressure build-up in the walnut tree.


Subject(s)
Juglans , Plant Stems , Seasons , Trees , Xylem , Juglans/physiology , Plant Stems/physiology , Xylem/physiology , Trees/physiology , Pressure , Models, Biological , Water/metabolism , Water/physiology , Biological Transport
2.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-37847599

ABSTRACT

Water content (WC) is a key variable in plant physiology even during the winter period. To simulate stem WC during the dormant season, a series of experiments were carried out on walnut trees under controlled conditions. In the field, WC was significantly correlated with soil temperature at 50 cm depth (R2 = 0.526). In the greenhouse, WC remained low as long as soil temperature was kept cold (<+5 °C) and increased after the soil temperature was warmed to +15 °C regardless of the date. Stem dehydration rate was significantly influenced by the WC and evaporative demand. A parsimonious model with functions describing the main experimental results was calibrated and validated with field data from 13 independent winter dynamics in Juglans regia L. orchards. Three functions of water uptake were tested, and these gave equivalent accuracies (root-mean-square error (RMSE) = 0.127-8; predictive root-mean-square error = 0.116). However, only a sigmoid function describing the relationship between the root water uptake and soil temperature gave values in agreement with the experimental results. Finally, the simulated WC provided a similar accuracy in predicting frost hardiness compared with the measured WC (RMSE ca 3 °C) and was excellent in spring (RMSE ca 2 °C). This model may be a relevant tool for predicting the risk of spring frost in walnut trees. Its genericity should be tested in other fruit and forest tree species.


Subject(s)
Juglans , Juglans/physiology , Water/physiology , Trees/physiology , Cold Temperature , Seasons , Soil
3.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-37738582

ABSTRACT

Frost resistance is the major factor affecting the distribution of plant species at high latitude and elevation. The main effects of freeze-thaw cycles are damage to living cells and formation of gas embolism in tree xylem vessels. Lethal intracellular freezing can be prevented in living cells by two mechanisms, such as dehydration and deep supercooling. We developed a multiphysics numerical model coupling water flow, heat transfer and phase change, considering different cell types in plant tissues, to study the dynamics and extent of cell dehydration, xylem pressure changes and stem diameter changes in response to freezing and thawing. Results were validated using experimental data for stem diameter changes of walnut trees (Juglans regia). The effect of cell mechanical properties was found to be negligible as long as the intracellular tension developed during dehydration was sufficiently low compared with the ice-induced cryostatic suction. The model was finally used to explore the coupled effects of relevant physiological parameters (initial water and sugar content) and environmental conditions (air temperature variations) on the dynamics and extent of dehydration. It revealed configurations where cell dehydration could be sufficient to protect cells from intracellular freezing, and situations where supercooling was necessary. This model, freely available with this paper, could easily be extended to explore different anatomical structures, different species and more complex physical processes.


Subject(s)
Juglans , Trees , Freezing , Trees/physiology , Dehydration , Water/physiology , Temperature , Juglans/physiology , Plant Stems
4.
J Exp Bot ; 74(18): 5840-5853, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37463327

ABSTRACT

Freeze-thaw-induced embolism, a key limiting factor for perennial plants results from the formation of gas bubbles during freezing and their expansion during thawing. However, the ice volumetric increase generates local pressures, which can affect the formation of bubbles. To characterize local dynamics of pressure tension and the physical state of the sap during freeze-thaw cycles, we simultaneously used ultrasonic acoustic emission analysis and synchrotron-based high-resolution computed tomography on the diffuse-porous species Betula pendula. Visualization of individual air-filled vessels and the distribution of gas bubbles in frozen xylem were performed.. Ultrasonic emissions occurred after ice formation, together with bubble formation, whereas the development of embolism took place after thawing. The pictures of frozen tissues indicated that the positive pressure induced by the volumetric increase of ice can provoke inward flow from the cell wall toward the lumen of the vessels. We found no evidence that wider vessels within a tissue were more prone to embolism, although the occurrence of gas bubbles in larger conduits would make them prone to earlier embolism. These results highlight the need to monitor local pressure as well as ice and air distribution during xylem freezing to understand the mechanism leading to frost-induced embolism.

5.
Sci Rep ; 13(1): 7724, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173393

ABSTRACT

Maintaining wine production under global warming partly relies on optimizing the choice of plant material for a given viticultural region and developing drought-resistant cultivars. However, progress in these directions is hampered by the lack of understanding of differences in drought resistance among Vitis genotypes. We investigated patterns of xylem embolism vulnerability within and among 30 Vitis species and sub-species (varieties) from different locations and climates, and assessed the risk of drought vulnerability in 329 viticultural regions worldwide. Within a variety, vulnerability to embolism decreased during summer. Among varieties, we have found wide variations in drought resistance of the vascular system in grapevines. This is particularly the case within Vitis vinifera, with varieties distributed across four clusters of embolism vulnerability. Ugni blanc and Chardonnay featured among the most vulnerable, while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. Regions possibly at greater risk of being vulnerable to drought, such as Poitou-Charentes, France and Marlborough, New Zealand, do not necessarily have arid climates, but rather bear a significant proportion of vulnerable varieties. We demonstrate that grapevine varieties may not respond equally to warmer and drier conditions, and highlight that hydraulic traits are key to improve viticulture suitability under climate change.


Subject(s)
Embolism , Vitis , Wine , Vitis/genetics , Seasons , Xylem
7.
Ann Bot ; 131(2): 245-254, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36567631

ABSTRACT

BACKGROUND: Plants have adapted to survive seasonal life-threatening frost and drought. However, the timing and frequency of such events are impacted by climate change, jeopardizing plant survival. Understanding better the strategies of survival to dehydration stress is therefore timely and can be enhanced by the cross-fertilization of research between disciplines (ecology, physiology), models (woody, herbaceous species) and types of stress (drought, frost). SCOPE: We build upon the 'growth-stress survival' trade-off, which underpins the identification of global plant strategies across environments along a 'fast-slow' economics spectrum. Although phenological adaptations such as dormancy are crucial to survive stress, plant global strategies along the fast-slow economic spectrum rarely integrate growth variations across seasons. We argue that the growth-stress survival trade-off can be a useful framework to identify convergent plant ecophysiological strategies to survive both frost and drought. We review evidence that reduced physiological activity, embolism resistance and dehydration tolerance of meristematic tissues are interdependent strategies that determine thresholds of mortality among plants under severe frost and drought. We show that complete dormancy, i.e. programmed growth cessation, before stress occurrence, minimizes water flows and maximizes dehydration tolerance during seasonal life-threatening stresses. We propose that incomplete dormancy, i.e. the programmed reduction of growth potential during the harshest seasons, could be an overlooked but major adaptation across plants. Quantifying stress survival in a range of non-dormant versus winter- or summer-dormant plants, should reveal to what extent incomplete to complete dormancy could represent a proxy for dehydration tolerance and stress survival. CONCLUSIONS: Our review of the strategies involved in dehydration stress survival suggests that winter and summer dormancy are insufficiently acknowledged as plant ecological strategies. Incorporating a seasonal fast-slow economics spectrum into global plant strategies improves our understanding of plant resilience to seasonal stress and refines our prevision of plant adaptation to extreme climatic events.


Subject(s)
Dehydration , Droughts , Water/physiology , Plants , Acclimatization
8.
Physiol Plant ; 174(6): e13798, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36251716

ABSTRACT

Under climate change, the increasing occurrence of late frost combined with advancing spring phenology can increase the risk of frost damage in trees. In this study, we tested the link between intra-specific variability in bud phenology and frost exposure and damages. We analysed the effects of the 2021 late frost event in a black spruce (Picea mariana (Mill.) BSP) common garden in Québec, Canada. We hypothesised that the timing of budbreak drives the exposure of vulnerable tissues and explains differences in frost damage. Budbreak was monitored from 2015 to 2021 in 371 trees from five provenances originating between 48° and 53° N and planted in a common garden at 48° N. Frost damages were assessed on the same trees through the proportion of damaged buds per tree and related to the phenological phases by ordinal regressions. After an unusually warm spring, minimum temperatures fell to -1.9°C on May 28 and 29, 2021. At this moment, trees from the northern provenances were more advanced in their phenology and showed more frost damage. Provenances with earlier budbreak had a higher probability of damage occurrence according to ordinal regression. Our study highlights the importance of intra-specific variability of phenological traits on the risk of frost exposure. We provide evidence that the timings of bud phenology affect sensitivity to frost, leading to damages at temperatures of -1.9°C. Under the same conditions, the earlier growth reactivation observed in the northern provenances increases the risks of late frost damage on the developing buds.


Subject(s)
Picea , Cold Temperature , Temperature , Phenotype , Seasons
9.
Physiol Plant ; 174(3): e13699, 2022 May.
Article in English | MEDLINE | ID: mdl-35532145

ABSTRACT

The buds of perennial plants become dormant in autumn and must integrate the information related to chilling and forcing temperatures to resume their growth in spring. In many studies, the initial date for chilling accumulation (DCA ) is set arbitrarily using various rules resulting in high variability across studies and sites. To test the relevancy of different rules to set DCA , sequential models (taking into account or not the negative effect of warm temperature) were optimized by minimizing the sums of squares between observed and predicted values for 34 endodormancy release and 77 budbreak dates for the walnut Juglans regia L. cv Franquette across France. Optimization of these different models highlighted that many of the DCA rules, incorporating a photoperiod signal on endodormancy induction, were effective (predicted root mean square standard error less than 10 and 8 days for endodormancy onset and bud break, respectively). Furthermore, the use of functions that compute negative chilling accumulation did not improve the performance of the models. Among the different rules, the projections of the best models were explored under different climates (current climate and Representative Concentration Pathways RCP scenarios). The projections revealed a tipping point at a mean annual temperature between 13 and 15°C, beyond which the advance in ontogenic development during ecodormancy does not compensate for the delay in endodormancy release. Although the physiological mechanisms driving the onset of endodormancy may be profoundly altered by global change, they appear to have minimal impact on the way current models predict dormancy and budbreak dates in walnut.


Subject(s)
Cold Temperature , Juglans , Plant Dormancy , Seasons , Juglans/growth & development , Models, Biological , Photoperiod , Plant Dormancy/physiology
11.
J Exp Bot ; 73(11): 3699-3710, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35176148

ABSTRACT

Acoustic emission analysis is promising to investigate the physiological events leading to drought-induced injury and mortality. However, their nature and source are not fully understood, making this technique difficult to use as a direct measure of the loss of xylem hydraulic conductance. Acoustic emissions were recorded during severe dehydration in lavender plants (Lavandula angustifolia) and compared with the dynamics of embolism development and cell damage. The timing and characteristics of acoustic signals from two independent recording systems were compared by principal component analysis (PCA). Changes in water potential, branch diameter, loss of hydraulic conductance, and cellular damage were also measured to quantify drought-induced damages. Two distinct phases of acoustic emissions were observed during dehydration: the first one associated with a rapid loss of diameter and a significant increase in loss of xylem conductance (90%), and the second with slower changes in diameter and a significant increase in cellular damage. Based on PCA, a developed algorithm discriminated hydraulic-related acoustic signals from other sources, proposing a reconstruction of hydraulic vulnerability curves. Cellular damage preceded by hydraulic failure seems to lead to a lack of recovery. The second acoustic phase would allow detection of plant mortality.


Subject(s)
Embolism , Lavandula , Acoustics , Dehydration , Water/physiology , Xylem/physiology
13.
15.
Tree Physiol ; 41(9): 1583-1600, 2021 09 10.
Article in English | MEDLINE | ID: mdl-33611596

ABSTRACT

Predicting tree frost tolerance is critical to select adapted species according to both the current and predicted future climate. The relative change in water to carbohydrate ratio is a relevant trait to predict frost acclimation in branches from many tree species. The objective of this study is to demonstrate the interspecific genericity of this approach across nine tree species. In the studied angiosperm species, frost hardiness dynamics were best correlated to a decrease in water content at the early stage of acclimation (summer and early autumn). Subsequently, frost hardiness dynamics were more tightly correlated to soluble carbohydrate contents until spring growth resumption. Based on different model formalisms, we predicted frost hardiness at different clade levels (angiosperms, family, genus and species) with high to moderate accuracy (1.5-6.0 °C root mean squared error (RMSE)) and robustness (2.8-6.1 °C prediction RMSE). The TOT model, taking all soluble carbohydrate and polyols into account, was more effective and adapted for large scale studies aiming to explore frost hardiness across a wide range of species. The ISC model taking the individual contribution of each soluble carbohydrate molecule into account was more efficient at finer scale such as family or species. The ISC model performance also suggests that the role of solutes cannot be reduced to a 'bulk' osmotic effect as could be computed if all of them were located in a single, common, compartment. This study provides sets of parameters to predict frost hardiness in a wide range of species, and clues for targeting specific carbohydrate molecules to improve frost hardiness.


Subject(s)
Trees , Water , Acclimatization , Carbohydrates , Seasons
18.
Plant Physiol ; 183(4): 1638-1649, 2020 08.
Article in English | MEDLINE | ID: mdl-32404411

ABSTRACT

In the context of climate change, determining the physiological mechanisms of drought-induced mortality in woody plants and identifying thresholds of drought survivorship will improve forecasts of forest and agroecosystem die-off. Here, we tested whether continuous measurements of branch diameter variation can be used to identify thresholds of hydraulic failure and physiological recoverability in lavender (Lavandula angustifolia and Lavandula × intermedia) plants exposed to severe drought. Two parameters of branch diameter variation were tested: the percentage loss of diameter and the percentage loss of rehydration capacity. In two greenhouse experiments with different growth conditions, we monitored variation in branch diameter in the two lavender species exposed to a series of drought/rewatering cycles that varied in drought-stress intensity. Water potential, stomatal conductance, loss of xylem hydraulic conductance, and electrolyte leakage were also measured. We observed that plants were not able to recover when percentage loss of diameter reached maximum values of 21.3% ± 0.6% during drought, regardless of species and growth conditions. A percentage loss of rehydration capacity of 100% was defined as the point of no recovery, and was observed with high levels of cellular damage as estimated by electrolyte leakage measured at 75.4% ± 9.3% and occurred beyond 88% loss of xylem hydraulic conductance. Our study demonstrates that lavender plants are not able to recover from severe drought when they have used up their elastic water storage. Additionally, drought-induced mortality in these species was not linked to xylem hydraulic failure but rather to high levels of cell damage.


Subject(s)
Droughts , Lavandula/anatomy & histology , Lavandula/physiology , Electrolytes/metabolism , Lavandula/metabolism , Xylem/anatomy & histology , Xylem/metabolism , Xylem/physiology
19.
Plant Cell Environ ; 43(3): 548-562, 2020 03.
Article in English | MEDLINE | ID: mdl-31850535

ABSTRACT

Climate change threatens food security, and plant science researchers have investigated methods of sustaining crop yield under drought. One approach has been to overproduce abscisic acid (ABA) to enhance water use efficiency. However, the concomitant effects of ABA overproduction on plant vascular system functioning are critical as it influences vulnerability to xylem hydraulic failure. We investigated these effects by comparing physiological and hydraulic responses to water deficit between a tomato (Solanum lycopersicum) wild type control (WT) and a transgenic line overproducing ABA (sp12). Under well-watered conditions, the sp12 line displayed similar growth rate and greater water use efficiency by operating at lower maximum stomatal conductance. X-ray microtomography revealed that sp12 was significantly more vulnerable to xylem embolism, resulting in a reduced hydraulic safety margin. We also observed a significant ontogenic effect on vulnerability to xylem embolism for both WT and sp12. This study demonstrates that the greater water use efficiency in the tomato ABA overproducing line is associated with higher vulnerability of the vascular system to embolism and a higher risk of hydraulic failure. Integrating hydraulic traits into breeding programmes represents a critical step for effectively managing a crop's ability to maintain hydraulic conductivity and productivity under water deficit.


Subject(s)
Abscisic Acid/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Water/metabolism , Computer Simulation , Gases/metabolism , Kinetics , Linear Models , Solanum lycopersicum/growth & development , Plant Stems/physiology , Plant Stomata/physiology , Plants, Genetically Modified , X-Ray Microtomography
20.
Ann Bot ; 124(7): 1173-1184, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31227829

ABSTRACT

BACKGROUND AND AIMS: Hydraulic studies are currently biased towards conifers and dicotyledonous angiosperms; responses of arborescent monocots to increasing temperature and drought remain poorly known. This study aims to assess xylem resistance to drought-induced embolism in palms. METHODS: We quantified embolism resistance via P50 (xylem pressure inducing 50 % embolism or loss of hydraulic conductivity) in petioles and leaflets of six palm species differing in habitat and phylogenetic relatedness using three techniques: in vivo X-ray-based microcomputed tomography, the in situ flow centrifuge technique and the optical vulnerability method. KEY RESULTS: Our results show that P50 of petioles varies greatly in the palm family, from -2.2 ± 0.4 MPa in Dypsis baronii to -5.8 ± 0.3 MPa in Rhapis excelsa (mean ± s.e.). No difference or weak differences were found between petioles and leaf blades within species. Surprisingly, where differences occurred, leaflets were less vulnerable to embolism than petioles. Embolism resistance was not correlated with conduit size (r = 0.37, P = 0.11). CONCLUSIONS: This study represents the first estimate of drought-induced xylem embolism in palms across biomes and provides the first step towards understanding hydraulic adaptations in long-lived arborescent monocots. It showed an almost 3-fold range of embolism resistance between palm species, as large as that reported in all angiosperms. We found little evidence for hydraulic segmentation between leaflets and petioles in palms, suggesting that when it happens, hydraulic segregation may lack a clear relationship with organ cost or replaceability.


Subject(s)
Arecaceae , Embolism , Droughts , Humans , Phylogeny , Plant Stems , Water , X-Ray Microtomography , Xylem
SELECTION OF CITATIONS
SEARCH DETAIL
...